Как сделать индуктивность своими руками из резистора. Ручная намотка и расчет индуктивности катушек «Универсаль

Вьетнам 06.04.2024
Вьетнам

Для того, чтобы создать магнитное поле и сгладить в нем помехи и импульсы, используются специальные накопительные элементы. Катушки индуктивности в цепи переменного тока и постоянного применяются для накопления определенного количества энергии и ограничения электричества.

Конструкция

Главное назначение катушек индуктивности ГОСТ 20718-75 – это накопление электрической энергии в пределах магнитного поля для акустики, трансформаторов и т. д. Их используют для разработки и конструирования различных селективных схем и электрических устройств. От конструкции (материала, количества витков), наличия каркаса зависит их функциональность, размеры и область использования. Изготовление устройств производится на заводах, но можно сделать их самостоятельно. Самодельные элементы несколько уступают по надежности профессиональным, но обходятся в разы дешевле.

Фото – схема

Каркас катушки индуктивности выполняется из диэлектрического материала. На него наматывается изолированный проводник, который может быть как одножильным, так и многожильным. В зависимости от типа намотки, они бывают:

  1. Спиральными (на ферритовом кольце);
  2. Винтовыми;
  3. Винтоспиральными или комбинированными.

Примечательной особенностью катушки индуктивности для электрических схем является то, что её можно намотать как в несколько слоев, так и нированно, т. е., с обрывками Если используется толстый проводник, то элемент может обматываться без каркаса, если тонкий – то только на рамку. Эти каркасы катушек индуктивности бывают различного сечения: квадратные, круглые, прямоугольные. Полученная намотка может вставляться в специальный корпус какого-либо электрического устройства или использоваться в открытом виде.


Фото – конструкция самодельного элемента

Для увеличения индуктивности используются сердечники. В зависимости от назначения элемента, варьируется используемый материал стержня:

  1. С ферромагнитным и воздушным сердечником применяются при высоких частотах тока;
  2. Стальные используются в условиях низкого напряжения.

Исходя из принципа работы, бывают такие типы:

  1. Контурные. Преимущественно используются в радиотехнике для создания колебательных контуров платы, работают вместе с конденсаторами. Для соединения используется последовательное подключение. Это современный вариант плоской контурной катушки Тесла;
  2. Вариометры. Это высокочастотные перестраиваемые катушки, индуктивностью которыми можно при необходимости управлять при помощи дополнительных устройств. Они представляют собой соединение двух отдельных катушек, при этом, одна подвижна, а вторая нет;
  3. Сдвоенные и подстроечные дроссели. Основные характеристики этих катушек: малое сопротивление постоянному току и высокое переменному. Дроссели изготавливаются из нескольких катушек, соединенных обмотками между собой. Их часто используют в виде фильтра для различных радиотехнических приборов, устанавливают для контроля помех в антенны и т. д.;
  4. Трансформаторы связи. Их конструктивной особенностью является то, что на одном стержне установлено от двух и более катушек. Они используются в трансформаторах для обеспечения определенной связи между отдельными компонентами устройства.

Маркировка катушек индуктивности определяется по количеству витков и цвету корпуса.

Фото – маркировка

Принцип действия

Схема работы катушек индуктивности активного действия основан на том, что каждый отдельный виток намотки пересекается с магнитными силовыми линиями. Этот электрический элемент необходим для того, чтобы извлекать электрическую энергию из источника питания и преобразовывая её сохранять в виде электрического поля. Соответственно, если ток цепи увеличивается – то расширяется и магнитное поле, но если он уменьшается – поле будет неизменно сжиматься. Эти параметры также зависят от частоты и напряжения, но в целом, действие остается неизменным. Включение элемента производит сдвиг фаз тока и напряжения.


Фото – принцип работы

Помимо этого, индуктивные (каркасные и бескаркасные) катушки обладают свойством самоиндукции, его расчет производится исходя из данных номинальной сети. В многослойной и однослойной обмотке создается напряжение, которое противоположно напряжению электрического тока. Это называется ЭДС, определение электродвижущей магнитной силы зависит от показателей индуктивности. Её можно рассчитать по закону Ома. Стоит отметить, что независимо от напряжения сети, сопротивление в катушке индуктивности не изменяется.


Фото – соединение отдельных выводов элементов

Связь индуктивности и понятия (изменения) ЭДС можно найти по формуле ε c = – dФ/dt = – L*dI/dt, где ε – это значение ЭДС самоиндукции. И если скорость изменения электрической энергии будет равна dI/dt = 1 A/c, то и L = ε c .

Видео: расчет катушки индуктивности

Вычисление

Формула – формула колебательного контура

Где L – это сам элемент, накапливающая магнитную энергию.

В это же время, период свободных колебаний этого контура вычисляется по:

Формула – период свободных колебаний

Где C – это конденсатор, реактивный элемент схемы, отдающий накапливающий электрическую энергию конкретной цепи. Величина индуктивного сопротивления в такой цепи вычисляется по X L = U/I. Здесь X – это емкостное сопротивление. При расчете резистора в пример вставляются основные параметры этого элемента.

Индуктивность соленоида определяет формула:

Формула – индуктивность катушки-соленоида

Помимо этого, уровень индуктивности имеет определенную зависимость от температуры на плате. Параллельное подключение нескольких деталей, изменение плотности и размеров витков обмотки и прочие параметры влияют на основные свойства этого элемента.

Фото – зависимость от температуры

Чтобы узнать параметры катушки индуктивности, можно использовать различные методы: измерить мультиметром, испытать на осциллографы, проверить отдельно амперметром или вольтметром. Эти варианты очень удобны тем, что в них в качестве реактивных элементов применяются конденсаторы, электропотери которых очень малы и могут не учитываться в расчетах. Иногда с целью упростить задачу применяется специальная программа расчета и измерения нужных параметров. Это позволяет значительно упростить выбор нужных элементов для схем.

Купить катушки индуктивности (SMD 150 мкГн и другие) и провода для их намотки можно в любом электротехническом магазине, их цена варьируется от 2 долларов до нескольких десятков.

Что вы себе представляете под словом “катушка” ? Ну… это, наверное, какая-нибудь “фиговинка”, на которой намотаны нитки, леска, веревка, да что угодно! Катушка индуктивности представляет из себя точь-в-точь то же самое, но вместо нитки, лески или чего-нибудь еще там намотана обыкновенная медная проволока в изоляции.

Изоляция может быть из бесцветного лака, из ПВХ-изоляции и даже из матерчатой. Тут фишка такая, что хоть и провода в катушке индуктивности очень плотно прилегают к друг другу, они все равно изолированы друг от друга . Если будете мотать катушки индуктивности своими руками, ни в коем случае не вздумайте брать обычный медный голый провод!

Индуктивность

Любая катушка индуктивности обладает индуктивностью . Индуктивность катушки измеряется в Генри (Гн), обозначается буковкой L и замеряется с помощью LC – метра .

Что такое индуктивность? Если через провод пропустить электрический ток, то он вокруг себя создаст магнитное поле:

где

В – магнитное поле, Вб

I –

А давайте возьмем и намотаем в спиральку этот провод и подадим на его концы напряжение


И у нас получится вот такая картина с магнитными силовыми линиями:


Грубо говоря, чем больше линий магнитного поля пересекут площадь этого соленоида, в нашем случае площадь цилиндра, тем больше будет магнитный поток (Ф) . Так как через катушку течет электрический ток, значит, через нее проходит ток с Силой тока (I), а коэффициент между магнитным потоком и силой тока называется индуктивностью и вычисляется по формуле:

С научной же точки зрения, индуктивность – это способность извлекать энергию из источника электрического тока и сохранять ее в виде магнитного поля. Если ток в катушке увеличивается, магнитное поле вокруг катушки расширяется, а если ток уменьшается, то магнитное поле сжимается.

Самоиндукция

Катушка индуктивности обладает также очень интересным свойством. При подаче на катушку постоянного напряжения, в катушке возникает на короткий промежуток времени противоположное напряжение.

Это противоположное напряжение называется ЭДС самоиндукции. Эта зависит от значения индуктивности катушки. Поэтому, в момент подачи напряжения на катушку сила тока в течение долей секунд плавно меняет свое значение от 0 до некоторого значения, потому что напряжение, в момент подачи электрического тока, также меняет свое значение от ноля и до установившегося значения. Согласно Закону Ома :


где

I – сила тока в катушке, А

U – напряжение в катушке, В

R – сопротивление катушки, Ом

Как мы видим по формуле, напряжение меняется от нуля и до напряжения, подаваемого в катушку, следовательно и ток тоже будет меняться от нуля и до какого то значения. Сопротивление катушки для постоянного тока также постоянное.

И второй феномен в катушке индуктивности заключается в том, что если мы разомкнем цепь катушка индуктивности – источник тока, то у нас ЭДС самоиндукции будет суммироваться к напряжению, которое мы уже подали на катушку.

То есть как только мы разрываем цепь, на катушке напряжение в этот момент может быть в разы больше, чем было до размыкания цепи, а сила тока в цепи катушки будет тихонько падать, так как ЭДС самоиндукции будет поддерживать убывающее напряжение.

Сделаем первые выводы о работе катушки индуктивности при подаче на нее постоянного тока. При подаче на катушку электрического тока, сила тока будет плавно увеличиваться, а при снятии электрического тока с катушки, сила тока будет плавно убывать до нуля. Короче говоря, сила тока в катушке мгновенно измениться не может.

Типы катушек индуктивности

Катушки индуктивности делятся в основном на два класса: с магнитным и немагнитным сердечником . Снизу на фото катушка с немагнитным сердечником.

Но где у нее сердечник? Воздух – это немагнитный сердечник:-). Такие катушки также могут быть намотаны на какой-нибудь цилиндрической бумажной трубочке. Индуктивность катушек с немагнитным сердечником используется, когда индуктивность не превышает 5 миллигенри.

А вот катушки индуктивности с сердечником:


В основном используют сердечники из феррита и железных пластин. Сердечники повышают индуктивность катушек в разы. Сердечники в виде кольца (тороидальные) позволяют получить большую индуктивность, нежели просто сердечники из цилиндра.

Для катушек средней индуктивности используются ферритовые сердечники:


Катушки с большой индуктивностью делают как трансформатор с железным сердечником, но с одной обмоткой, в отличие от трансформатора.


Дроссели

Также есть особый вид катушек индуктивностей. Это так называемые . Дроссель – это катушка индуктивности, задача которой состоит в том, чтобы создать в цепи большое сопротивление для переменного тока, чтобы подавить токи высоких частот.

Постоянный ток через дроссель проходит без проблем. Почему это происходит, можете прочитать в этой статье. Обычно дроссели включаются в цепях питания усилительных устройств. Дроссели предназначены для защиты источников питания от попадания в них высокочастотных сигналов (ВЧ-сигналов). На низких частотах (НЧ) они используются цепей питания и обычно имеют металлические или ферритовые сердечники. Ниже на фото силовые дроссели:


Также существует еще один особый вид дросселей – это . Он представляет из себя две встречно намотанных катушки индуктивности. За счет встречной намотки и взаимной индукции он более эффективен. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания, а также в звуковой технике.


Опыты с катушкой

От каких факторов зависит индуктивность катушки? Давайте проведем несколько опытов. Я намотал катушку с немагнитным сердечником. Ее индуктивность настолько мала, что LC – метр мне показывает ноль.


Имеется ферритовый сердечник


Начинаю вводить катушку в сердечник на самый край


LC-метр показывает 21 микрогенри.

Ввожу катушку на середину феррита


35 микрогенри. Уже лучше.

Продолжаю вводить катушку на правый край феррита


20 микрогенри. Делаем вывод, самая большая индуктивность на цилиндрическом феррите возникает в его середине. Поэтому, если будете мотать на цилиндрике, старайтесь мотать в середине феррита. Это свойство используется для плавного изменения индуктивности в переменных катушках индуктивности:

где

1 – это каркас катушки

2 – это витки катушки

3 – сердечник, у которого сверху пазик под маленькую отвертку. Вкручивая или выкручивая сердечник, мы тем самым изменяем индуктивность катушки.


Индуктивность стала почти 50 микрогенри!

А давайте-ка попробуем расправим витки по всему ферриту


13 микрогенри. Делаем вывод: для максимальной индуктивности мотать катушку надо “виток к витку”.

Убавим витки катушки в два раза. Было 24 витка, стало 12.


Совсем маленькая индуктивность. Убавил количество витков в 2 раза, индуктивность уменьшилась в 10 раз. Вывод: чем меньше количество витков – тем меньше индуктивность и наоборот. Индуктивность меняется не прямолинейно виткам.

Давайте поэкспериментируем с ферритовым кольцом.


Замеряем индуктивность


15 микрогенри

Отдалим витки катушки друг от друга


Замеряем снова


Хм, также 15 микрогенри. Делаем вывод: расстояние от витка до витка не играет никакой роли в катушке индуктивности тороидального исполнения.

Мотнем побольше витков. Было 3 витка, стало 9.


Замеряем


Офигеть! Увеличил количество витков в 3 раза, а индуктивность увеличилась в 12 раз! Вывод: индуктивность меняется не прямолинейно виткам.

Если верить формулам для расчета индуктивностей, индуктивность зависит от “витков в квадрате”. Эти формулы я здесь выкладывать не буду, потому как не вижу надобности. Скажу только, что индуктивность зависит еще от таких параметров, как сердечник (из какого материала он сделан), площадь поперечного сечения сердечника, длина катушки.

Обозначение на схемах


Последовательное и параллельное соединение катушек

При последовательном соединении индуктивностей , их общая индуктивность будет равняться сумме индуктивностей.


А при параллельном соединении получаем вот так:


При соединении индуктивностей должно выполняться правило, чтобы они были пространственно разнесены на плате. Это связано с тем, что при близком расположении друг друга их магнитные поля будут влиять с друг другом, и поэтому показания индуктивностей будут неверны. Не ставьте на одну железную ось две и более тороидальных катушек. Это может привести к неправильным показаниям общей индуктивности.

Резюме

Катушка индуктивности играет в электронике очень большую роль, особенно в приемопередающей аппаратуре. На катушках индуктивности строятся также различные для электронной радиоаппаратуры, а в электротехнике ее используют также в качестве ограничителя скачка силы тока.

Ребята из Паяльника забабахали очень неплохой видос про катушку индуктивности. Советую посмотреть в обязательном порядке:

Итак, дорогие друзья, если вы тут, то вам скорее всего интересно, как устроена катушка индуктивности (дроссель). Их существует очень большое количество разновидностей, и иногда они настолько сильно отличаются друг от друга, или наоборот - так похожи на обычный трансформатор, что не сразу и определить. Выглядит она примерно так:

А обозначается на схеме вот так:

Применяется катушка для многих целей:

  • подавление помех;
  • накопления энергии;
  • создания магнитных полей.

Катушка выполняется в виде спиральных обмоток одножильного или многожильного проводника вокруг главного стержня целиндрической формы.
-
Свойства катушки индуктивности:

  • Сопротивление катушки растет с увеличением частоты текущего через неё тока;
  • Скорость изменения тока через катушку ограничена и определяется индуктивностью катушки.

Схема работы катушки;

---
Давайте соберем свою катушку индуктивности!
B-магнитное поле,I-сила тока.

Для начала возьмем этот провод и сможем в спиральку.

На концы нашей катушку подадим электричество! Сделаем первые выводы о работе нашего устройства.Если на катушку беспрерывно подавать электрический ток,то его сила плавно увеличится.Если же резко убрать эл. ток,то его сила резко возрастет в катушку,и плавно убавится до нуля.

Бывает два вида катушек:

С немагнитным и магнитным сердечником.
Какая же у нас получилась катушка?Правильно,воздух-немагнитный сердечник.Такие катушки обычно наматываются на бумажную трубочку и используются,если индуктивность не превышает 5миллиГенри.
--
А вот так выглядят катушки с магнитным или железным сердечником:

Сердечник увеличивает силу катушки в разы...
А это типичный представитель данного вида-трансформатор:

У него имеется лишь два отличия от катушек с магнитным сердечником:

  1. У него железный сердечник,так как он имеет большую индуктивность.
  2. У него есть первичная и вторичная обмотка.

----
Ну вот и все,дорогие друзья,надеюсь вам понравилась моя статья,в которой я рассказывал о том,что такое катушка индуктивности,и как её сделать самому.

--------
Griguz_Piguz

Эксперимент по переделыванию батарейного регенератора(регенеративный радиоприемник) на лампе 2К2М под диапазон коротких волн(КВ, SW). Описано и проиллюстрированорасчет и изготовление катушки индуктивности для КВ диапазона. Также кратко расскажу как ведет себя приемник с новой катушкой и что изменилось.

Предисловие

Этот радиоприемник построен на радиолампе 2К2М и принимал радиовещательные станции в диапазонах СВ(средние волны), MW(middle waves) и ДВ(длинные волны), LW(long waves). Позже мне пришла идея попробовать переделать его под КВ(короткие волны), SW(short waves) диапазон.

Анализ и подготовка

Просмотрев несколько схем коротковолновых регенеративных радиоприемников, где так же используется катушка связи, пришел к выводу что для эксперимента достаточно будет сделать новую контурную катушку индуктивности.

Радиолампа 2К2М может работать на частотах до 25МГц, поэтому ее можно смело оставить, не меняя на более высокочастотную.

Что немного смущало так это емкость контурного КПЕ(конденсатор переменной емкости), она лежит в пределах 20-400 пФ, что для КВ диапазона немножко многовато как для минимального значения так и для максимального. Менять КПЕ не планировалось, поскольку все уже хорошо сидит на шасси, была лишь идея попробовать немножко сузить его емкость, подключив последовательно конденсатор некоторой емкости.

Общая емкость двух последовательно соединенных конденсаторов можно рассчитать по формуле:

С общ = (C1*C2) / (C1+C2)

При подключении к КПЕ(20-400пФ) последовательно конденсатора 50пФ общая емкость с регулировкой будет 14-44пФ. Не очень хорошее значение, хотя можно попробовать.

Теперь нам нужно рассчитать катушку индуктивности чтобы можно было принимать радиостанции в диапазоне КВ. На одном форуме нашел пост где человек изготавливал регенератор и для катушки КВ диапазона (40-80м) использовал вот такие данные:

  • Диаметр каркаса - 45мм;
  • Контурная катушка содержит 12 витков эмалированного провода диаметром 0.8мм;
  • Катушка связи содержит 3 витка эмалированного провода диаметром 0.5мм.

Доверяй, но проверяй! - давайте не поленимся и рассчитаем чего мы сможем добиться от катушки с такими параметрами.

Расчет индуктивности однослойной катушки

Посчитаем по формулам индуктивность однослойной контурной катушки с параметрами намотки что приведены выше. Для наглядности нарисовал рисунок:

Рис. 1. Катушка индуктивности, параметры.

Формула рассчета индуктивности катушки:

L = D*D*n*n / (45*D + 100*l), где:

  • L - индуктивность катушки, мкГн;
  • D - диаметр катушки, см;
  • n - число витков катушки;
  • l - длина намотки катушки, см.

L = 4.5*4.5*12*12 / (45*4.5 + 100*1.1) = 2916 / (202.5 + 110) = 9.3 мкГн(µH) =0.0000093 Гн = 9.3 * 10 −6 Гн.

Индуктивность катушки что содержит 12 витков провода (примерно 1,1 см в длину проводом 0.8мм) и намотана на каркасе диаметром 45мм составляет - 9.3 мкГн(µH). Все просто!

Расчет частоты колебательного контура

Зная индуктивность катушки и емкость конденсатора в нашем колебательном контуре сможем рассчитать его резонансную частоту.

Рис. 2. Схема колебательного контура.

Расчет частоты колебательного контура проведем используя формулу:

ƒ = 1 / (2 * π * √(LC)), где:

  • ƒ - резонансная частота контура, Гц;
  • π - число Пи, 3,1415;
  • L - индуктивность катушки, Гн;
  • С - емкость конденсатора, Ф.

Рассчитаем частоту колебательного контура взяв при этом нижнюю емкость конденсатора КПЕ что у меня есть: С = 20 пФ = 0.00000000002 Ф = 20 * 10 −12 Ф.

ƒ1 = 1 / (2 * 3.14 * √ (0.00000000002*0.0000093)) = 11675725,7 Гц = 11,67 МГц.

Теперь то же самое но берем верхнюю границу емкости КПЕ, возьмем больше половины: С = 300пФ = 0.0000000003 Ф = 300 * 10 −12 Ф.

ƒ2 = 1 / (2 * 3.14 * √ (0.0000000003*0.0000093)) = 3014659,4 Гц = 3,01 МГц.

И того, используя катушку индуктивности с приведенными выше параметрами и мой КПЕ я смогу покрыть диапазон примерно от 3 до 11 МГц.

Таблица КВ диапазонов

Короткие волны, отражаясь от поверхности земли могут распространяться на достаточно большие дистанции. То, насколько качественно мы сможем принимать волны разной длины зависит от многих факторов, одним из наиболее выраженных является время суток: день или ночь.

В день хорошо распространяются менее длинные волны, а ночью - большей длины.

Ниже приведу для справки таблицу вещательных КВ диапазонов с примечанием по зависимости от времени суток:

  • 11 метров, 25.600 - 26.100 MHz (дневной);
  • 13 метров, 21.450 - 21.850 MHz (дневной);
  • 15 метров, 18.900 - 19.020 MHz (дневной);
  • 16 метров, 17.480 - 17.900 MHz (дневной);
  • 19 метров, 15.100 - 15.900 MHz (дневной);
  • 21 метр, 13.500 - 13.870 MHz;
  • 25 метров 11.600 - 12.100 MHz;
  • 31 метра, 9.400 - 9.990 MHz;
  • 41 метра, 7.200 - 7.600 MHz;
  • 49 метров, 5.730 - 6.295 MHz;
  • 60 метров, 4.750 - 5.060 MHz (ночной);
  • 75 метров, 3.900 - 4.000 MHz (ночной);
  • 90 метров, 3.200 - 3.400 MHz (ночной);
  • 120 метров, 2.300 - 2.495 MHz (ночной).

Исходя из моих расчетов, что произведены выше, я смогу охватить радиоприемником диапазоны примерно в пределах 41 - 25 метров.

Изготовление катушки индуктивности

Все данные есть в наличии, можно приступать к изготовлению катушки индуктивности. Для иллюстрации подключения катушек размещу здесь часть схемы из своего радиоприемника.

Рис. 3. Схема включения катушек индуктивности в радиоприемнике(начала намотки обозначены точкой).

Если смотреть по схеме то для одного диапазона можно мотать на каркас всего две катушки: контурная заменит L1 и L2, а катушка связи заменит L3 и L4, при этом переключатель S1 можно исключить.

Я все же принял решение сделать 4 катушки как на схеме ради эксперимента, интересно как поведет себя такое решение в КВ диапазоне, к тому же возможно что получится захватить еще более низкочастотный диапазон в добавку к основному.

Первым делом нужно изготовить каркас на котором будем мотать провод. Под каркас можно использовать кусок полиэтиленовой или пластиковой трубы или же другой цилиндр нужного диаметра.

Мне понадобится каркас диаметром 45мм, поскольку нашел в барахле трубу немного меньшим диаметром 40мм и чтобы ее не портить было принято решение склеить вокруг нее каркас из бумаги.

Рис. 4. Каркас для катушки - кусок трубы.

Для склеивания использовал листы формата А4 - бумага достаточно плотная, хорошо подходит для подобных целей. Сначала мотаем на каркас 1-2 листа бумаги без промазывания клеем, это нужно чтобы можно было потом изять трубу.

Рис. 5. Несколько проклеенных между собой слоев бумаги для каркаса будущей катушки.

Теперь намазываем клеем каждый лист бумаги и оборачиваем в него каркас. Наклеивать желательно 5 и более листов бумаги - это поможет достигнуть достаточной прочности каркаса когда он высохнет. Для высушивания достаточно 12 часов, если клеить клеем ПВА.

После того как каркас высох оказалось что он настолько стянулся на трубе что ее извлечь теперь не предоставляется возможным - пришлось разрезать каркас вдоль и после изъятия склеить надрез. Каркас готов и он достаточно прочен для того чтобы мотать на него толстый провод.

Рис. 6. Каркас из бумаги для катушки индуктивности готов.

Для намотки использовал медный проводник диаметром 0.8мм и 0.5мм - контурная и катушка связи соответственно.

Рис. 7. Самодельная катушка индуктивности для КВ диапазона готова!

Рис. 8. Самодельная катушка КВ - вид со стороны выводов.

Для удобства я пометил точками начала намотки катушек - это поможет не запутаться при подключению ее к радиоприемнику. Крепление проводников реализовал сделав отверстия в каркасе при помощи иглы.

Рис. 9. Скрепляем витки обмоток воском.

Для того чтобы витки обмоток катушки держались надежно вместе можно склеить их клеем или же просто капнуть по несколько капелек воска.

Установка КВ катушки в радиоприемник

Теперь катушка для КВ диапазона готова к установке в радиоприемник. Нужно стараться использовать максимально короткие выводы от обмоток при соединении их с компонентами радиоприемника.

Рис. 10. Катушка КВ диапазона установлена в радиоприемник. (клик - увеличение).

Рис. 11. радиоприемник с установленной катушкой КВ диапазона, вид сзади. (клик - увеличение).

Рис. 12. Готовый КВ приемник и старая катушка для диапазонов СВ-ДВ.

Работа с приемником в КВ диапазоне

Приемник готов к работе, можно приступать к экспериментам. Пробы проводились в вечернее-ночное время. Сначала была подключена длинная антенна - кусок грубого медного провода длиной порядка 10 метров.

С такой антенной удалось поймать несколько станций, причем ручка регулировки обратной связи никак не влияла на работу радиоприемника, мне это показалось странным - возможно перепутал начала и концы при подключении обмоток обратной связи.

Подключение заземления также не улучшило результатов работы радиоприемника. Решил попробовать в качестве антенны медный штырь диаметром 1-1,2мм и длиной порядка 1-1,5м.

После включения радиоприемника результат не заставил себя ждать - удалось поймать несколько станций, причем ручка регенерации работала теперь отлично и удавалось словить и усилить достаточно слабые сигналы вещательных станций.

Получилось услышать Радио-Свобода, вещание из других стран, кодированные сигналы и другие станции на КВ. Самое большое скопление станций наблюдалось на пороговой границе регулировки КПЕ (С = 20пФ), скорее всего если уменьшить этот порог до 10 пФ то удастся поймать еще больше станций или же нужно делать перерасчет катушки с последующей ее перемоткой.

Приемник стал менее устойчивым к перестройке под воздействием рук и касаний разных частей схемы. Иногда можно даже побаловаться с антенной приемника как с антенной терменвокса(музыкальный инструмент).

Что еще можно попробовать

После расчетов сразу возникла мысль: можно ведь просчитать количество витков и сделать несколько катушек на разные поддиапазоны, а для их переключения использовать переключатель на несколько положений (5 например). В таком случае катушка связи будет одна (L3), а контурную катушку (L1) мотаем делая отводы от определенного количества витков.

Заключение

Эксперимент удался! Я получил интересный опыт и было увлекательно. Изначально не планировал писать о расчетах катушки и колебательного контура но посчитал что это может быть полезно для тех кто захочет повторить эксперимент. К тому же в процессе подготовки материалов и расчетов я узнал некоторые вещи о которых раньше и не подозревал.

Катушки индуктивности предназначены для фильтрации токов высокой частоты. Они устанавливаются в колебательных контурах и используются для других целей в электрических и электронных схемах. Готовое устройство заводского изготовления надёжнее в работе, но дороже, чем изготовленное своими руками. Кроме того, не всегда удаётся приобрести элемент с необходимыми характеристиками. В этом случае расчёт катушки индуктивности и само устройство можно сделать самостоятельно.

Конструкция катушки

Каркас устройства изготавливается из диэлектрика. Это может быть тонкий (нефольгированный) гетинакс, текстолит, а на тороидальных сердечниках –просто обмотка из лакоткани или аналогичного материала.

Обмотка выполняется из одножильного или многожильного изолированного провода.

Внутрь обмотки вставляется сердечник. Он изготавливается из железа, трансформаторной стали, феррита и других материалов. Он может быть замкнутым, тороидальным (бублик), квадратным или незамкнутым (стержень). Выбор материала зависит от условий работы: частоты, магнитного потока и других параметров.

Протекающий по проводу электрический ток создаёт вокруг него электромагнитное поле. Соотношение величины поля к силе тока называется индуктивностью. Если провод свернуть кольцом или намотать на каркас, то получится катушка индуктивности. Её параметры рассчитывают по определённым формулам.

Расчёт индуктивности прямого провода

Индуктивность прямого стержня – 1-2мкГн на метр. Она зависит от его диаметра. Точнее можно рассчитать по формуле:

L=0.2l(logl/d-1), где:

  • d – диаметр провода,
  • l – длина провода.

Эти величины нужно измерять в метрах (м). При этом результат будет иметь размерность микрогенри (мкГн). Вместо натурального логарифма ln допустимо использовать десятичный lg, который в 2,3 раза меньше.

Предположим, что какая-то деталь подключена проводами длиной 4 см и диаметром 0,4 мм. Произведя при помощи калькулятора расчет по выше приведённой формуле, получаем, что индуктивность каждого из этих проводов составит (округлённо) 0,03 мкГн, а двух – 0,06 мкГн.

Ёмкость монтажа составляет порядка 4,5пФ. При этом резонансная частота получившегося контура составит 300 МГц. Это диапазон УКВ.

Важно! Поэтому при монтаже устройств, работающих в частотах УКВ, длину выводов деталей нужно делать минимальной.

Расчёт однослойной намотки

Для увеличения индуктивности провод сворачивается кольцом. Величина магнитного потока внутри кольца выше примерно в три раза. Рассчитать её можно при помощи следующего выражения:

L = 0,27D(ln8D/d-2), где D – диаметр кольца, измеренный в метрах.

При увеличении количества витков индуктивность продолжает расти. При этом индукция отдельных витков влияет на соседние, поэтому получившиеся параметры пропорциональны не количеству витков N, а их квадрату.

Дроссель с сердечником

Параметры обмотки, намотанной на каркас, диаметром намного меньше длины рассчитывается по формуле:

Она справедлива для устройства большой длины или большого тора.

Размерность в ней дана в метрах (м) и генри (Гн). Здесь:

  • 0 = 4 10-7 Гн/м – магнитная константа,
  • S = D2/4 – площадь поперечного сечения обмотки, магнитная проницаемость магнитопровода, которая меньше проницаемости самого материала и учитывает длину сердечника; в разомкнутой конструкции она намного меньше, чем у материала.

Например, если стержень антенны изготовить из феррита с проницаемостью 600 (марки 600НН), то у получившегося изделия она будет равна 150. При отсутствии магнитного сердечника = 1.

Для того чтобы использовать это выражение для расчёта обмоток, намотанных на тороидальном сердечнике, его необходимо измерять по средней линии “бублика”. При расчёте обмоток, намотанных на железе Ш-образной формы без воздушного зазора, длину пути магнитного потока измеряют по средней линии сердечника.

В расчёте диаметр провода не учитывается, поэтому в низкочастотных конструкциях сечение провода выбирается по таблицам, исходя из допустимого нагрева проводника.

В высокочастотных устройствах, так же как и в остальных, стремятся свести омическое сопротивление к минимуму для достижения максимальной добротности прибора. Простое повышение сечения провода не помогает. Это приводит к необходимости наматывать обмотку в несколько слоёв. Но ток ВЧ идёт преимущественно по поверхности, что приводит к увеличению сопротивления. Добротность в высокочастотных элементах растёт вместе с увеличением всех размеров: длины и диаметров обмотки и провода.

Максимальная добротность получается в короткой обмотке большого диаметра, с соотношением диаметр/длина, равным 2,5. Параметры такого устройства вычисляются по формуле:

L=0.08D2N2/(3D+9b+10c).

В этой формуле все параметры измеряются в сантиметрах (см), а результат получается в микрогенри (мкГн).

По этой формуле рассчитывается также плоская катушка. Диаметр “D” измеряется по среднему витку, а длина “l” по ширине:

Многослойная намотка

Многослойная намотка без сердечника вычисляется по формуле:

L=0.08D2N2/(3D+9b+10c).

Размеры здесь измеряются в сантиметрах (см), а результат получается в микрогенри (мкГн).

Добротность такого устройства зависит от способа намотки:

  • обычная плотная намотка – самая плохая, не более 30-50;
  • внавал и универсал;
  • “сотовая”.

Для увеличения добротности при частоте до 10 мГц вместо обычного, одножильного провода, можно взять литцендрат или посеребренный проводник.

Справка. Литцендрат – это провод, скрученный из большого количества тонких изолированных друг от друга жил.

Литцендрат имеет большую поверхность, по сравнению с одножильным проводником того же сечения, поэтому на высоких частотах его сопротивление ниже.

Использование сердечника в высокочастотных устройствах повышает индуктивность и добротность катушки. Особенно большой эффект даёт использование замкнутых сердечников. При этом добротность дросселя зависит не от активного сопротивления провода, а от проницаемости магнитопровода. Рассчитывается такой прибор по обычным формулам для низкочастотных устройств.

Сделать катушку или дроссель можно самостоятельно. Перед тем, как её изготавливать, необходимо рассчитать индуктивность катушки по формулам или при помощи онлайн-калькулятора.

Видео

Рекомендуем почитать

Наверх